Abstract

Purpose. To design a method for smoothing the working surfaces of stator and rotor with the use of computer simulation to eliminate the impact of the rotor on the stator when they interact. Methodology. Special and general methods of research have been used: interpolation of the point series – to determine the contour nodes of the rotor and the stator of the rotary-planetary machine; formation of B-splines – to construct a point series whose coordinates are structurally determined; technology of automated formation of curves in CAD-system SolidWorks – for modelling of functional surfaces of a planetary-rotary compressor. Findings. Algorithms for formation of the contours representing curves defined analytically or constructively with a given accuracy have been developed. The obtained contours are used in the CAD system as linear elements of the surface model. The developed method has been tested in the simulation of functional surfaces of a planetary-rotary compressor. Optimization of the body shape and rotor profiles in order to increase the productivity of the rotary-planetary machine has been carried out. Originality. The developed algorithms make it possible to determine the original point series belonging to any curve and provide a given interpolation accuracy when forming a B-spline contour or second-order curve arcs. Computer models of the body surfaces of the rotor are formed on the basis of the gear ratio of the planetary-rotary mechanism and the rotor dimensions. In order to increase the performance of the compressor, the working surfaces of the rotor have been optimized. The maximum volume of the working chamber was increased by increasing the radius of the moving gear of the planetary-rotary mechanism. In order to prevent the rotor from jamming during compressor operation, the rotor contour was changed. Practical value. The method for modelling the surfaces of complex shape in CAD-system has been developed on the basis of creating contours which with given accuracy represent lines from the surface determinant. This method makes it possible to form computer models of complex surfaces on the basis of a framework consisting of curves absent in CAD libraries.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.