Abstract
The design space for self-assembled multicomponent objects ranges from a solution in which every building block is unique to one with the minimum number of distinct building blocks that unambiguously define the target structure. We develop a pipeline to explore the design spaces for a set of structures of various sizes and complexities. To understand the implications of the different solutions, we analyze their assembly dynamics using patchy particle simulations and study the influence of the number of distinct building blocks, and the angular and spatial tolerances on their interactions, on the kinetics and yield of the target assembly. We show that the resource-saving solution with a minimum number of distinct blocks can often assemble just as well (or faster) than designs where each building block is unique. We further use our methods to design multifarious structures, where building blocks are shared between different target structures. Finally, we use coarse-grained DNA simulations to investigate the realization of multicomponent shapes using DNA nanostructures as building blocks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.