Abstract

This work presents an innovative approach to dynamic design that has the significant advantage of allowing the dynamic requirements to be specified from the earliest design stage. The method applies genetic algorithms to optimize the dynamic behavior of the engine-subframe system and its links to the chassis. The optimization minimizes the sum of the amplitudes of the forces transmitted to the chassis from each mounting, while complying with the static and dynamic constraints. The genetic algorithm was applied to a multibody system model of the engine-subframe system and its links to derive new, improved configurations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.