Abstract

Accurately identifying the protein-ligand binding sites or pockets is of significant importance for both protein function analysis and drug design. Although much progress has been made, challenges remain, especially when the 3D structures of target proteins are not available or no homology templates can be found in the library, where the template-based methods are hard to be applied. In this paper, we report a new ligand-specific template-free predictor called TargetS for targeting protein-ligand binding sites from primary sequences. TargetS first predicts the binding residues along the sequence with ligand-specific strategy and then further identifies the binding sites from the predicted binding residues through a recursive spatial clustering algorithm. Protein evolutionary information, predicted protein secondary structure, and ligand-specific binding propensities of residues are combined to construct discriminative features; an improved AdaBoost classifier ensemble scheme based on random undersampling is proposed to deal with the serious imbalance problem between positive (binding) and negative (nonbinding) samples. Experimental results demonstrate that TargetS achieves high performances and outperforms many existing predictors. TargetS web server and data sets are freely available at: http://www.csbio.sjtu.edu.cn/bioinf/TargetS/ for academic use.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.