Abstract

We present a general framework for inverse design of nanopatterned surfaces that maximize spatially averaged surface-enhanced Raman (SERS) spectra from molecules distributed randomly throughout a material or fluid, building upon a recently proposed trace formulation for optimizing incoherent emission. This leads to radically different designs than optimizing SERS emission at a single known location, as we illustrate using several 2D design problems addressing effects of hot-spot density, angular selectivity, and nonlinear damage. We obtain optimized structures that perform about 4 × better than coating with optimized spheres or bowtie structures and about 20 × better when the nonlinear damage effects are included.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.