Abstract

This paper focuses on the design of minimum-cost networks satisfying two technical constraints. First, the connected components should be unicyclic. Second, some given special nodes must belong to cycles. This problem is a generalization of two known problems: the perfect binary 2-matching problem and the problem of computing a minimum-weight basis of the bicircular matroid. It turns out that the problem is polynomially solvable. An exact extended linear formulation is provided. We also present a partial description of the convex hull of the incidence vectors of these Steiner networks. Polynomial-time separation algorithms are described. One of them is a generalization of the Padberg–Rao algorithm to separate blossom inequalities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.