Abstract
Electrochemical water splitting powered by renewables-generated electricity represents a promising approach for green hydrogen production. However, the sluggish kinetics for the hydrogen evolution reaction (HER) under an alkaline medium causes a massive amount of energy losses, hindering large-scale production. Exploring efficient and low-cost catalyst candidates for large-scale H2 generation becomes a crucial demand. Single-atom catalysts (SACs) demonstrate great promise for enabling efficient alkaline HER catalysis at maximum atom utilization efficiency. In this review, we provide a comprehensive overview of the recent progress in SACs for the HER application in alkaline environments. The fundamentals of alkaline HER are first introduced, followed by a justification of the need to develop SACs. The rational design of the SACs including the inherent element property, coordination environment, SAC morphology, and SAC mass loading are highlighted. To facilitate the development of SACs for alkaline HER, we further propose the remaining challenges and perspectives in this research field.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.