Abstract

The microworld simulator paradigm is well established in the areas of ship-navigation and spaceflight, but has yet to be applied to rail. This paper presents a case study aiming to address this research gap, and describes the development of a train driving microworld as a tool to overcome some common research barriers. A theoretical framework for microworld design is tested and used to explore some key methodological issues and characteristics of train driving, enhancing theory development and providing a useful guideline for the designers of other collision-avoidance systems. A detailed description is given of the ATREIDES (Adaptive Train Research Enhanced Information Display & Environment Simulator) microworld, which simulates the work environment of a train driver in a high-speed passenger train. General indications of the testable driving scenarios that may be simulated are given, and an example of an ATREIDES-based study is presented to illustrate its applied research potential. The article concludes with a review of the design process, considers some strengths and limitations, and explores some future initiatives towards enhancing the systematic study of rail research in the human factors community.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call