Abstract

Three dimensional nanostructured silicon based electrodes are promising for high capacity anodes in lithium ion battery. Though the specific capacity of silicon is very high compared to the conventional graphite anode, its large volume changes in cycling results in poor cycle life, which eventually restricts Si use in commercial applications. This problem could be overcomed by producing selfstanding nanostructures that can provide facile relaxation to prevent electrode pulverization. Plus, nanostructured electrodes maintain effective electrical contacts in cycling and provide short Li diffusion distances improving their electrochemical performances. In this paper, by using electron beam evaporation glancing angle deposition method three dimensional Si based composite (10%at. Cu) self-standing nanostructures with different porosities are produced. After the morphological and structural characterizations, their potential uses as anodes in lithium ion batteries are evaluated by means of electrochemical tests.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.