Abstract

This paper is concerned with a fixed size subset selection problem for Bernoulli populations in the framework of the indifference zone approach. The goal is to select s populationswhich contain at least c of those with the t largest success probabilities. In order to control the probability of correct selection over the preference zone extensive tables of exact minimum sample sizes have been prepared to implement the single-stage procedure generalized from the well-known Sobel-Huyett procedure. It is shown how the tables can also be employed to design certain closedsequential procedures. These procedures curtail the sampling process of the single-stage procedureand may differ in their sampling rules. Two procedures working with play-the-winner rules are described in detail

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.