Abstract

Valvular interstitial cells (VICs) possess many properties that make them attractive for use in the construction of a tissue-engineered valve; however, we have found that the surfaces to which VICs will adhere and spread are limited. For example, VICs adhere and spread on collagen and laminin-coated surfaces, but display altered morphology and do not proliferate. Interestingly, fibronectin (FN) was one adhesion protein that facilitated VIC adhesion and proliferation. Yet VICs did not spread on surfaces modified with RGD, a ubiquitous cell-adhesive peptide, nor with other FN-specific peptide sequences such as EILDV and PHSRN. Hyaluronic acid (HA) is a highly elastic polysaccharide that is involved in natural valve morphogenesis and possesses binding interactions with FN. Hyaluronic acid was modified to form photopolymerizable hydrogels, and VICs were found to spread and proliferate on HA-based gels, forming a confluent monolayer on the gels within 4 days. Modified HA retained its ability to specifically bind FN, allowing for the formation of gels containing both HA and FN. Valvular interstital cells cultured on HA surfaces displayed significantly increased production of extracellular matrix proteins, indicating that HA-based scaffolds may provide useful biological cues to stimulate heart valve tissue formation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.