Abstract

Polymer electrolyte membrane fuel cells are appealing to resolve the environmental and energy issues but are still heavily inhibited by the dilemma of fabricating effective and durable electrocatalysts for oxygen reduction reaction (ORR). In this work, highly open Pt3Cu nanoframes and one-dimensional, hollow titanium nitride architectures are both successfully explored and implemented as the new system to replace the traditional Pt-carbon motif. The ORR performance of the obtained electrocatalyst shows specific and mass activities of 5.32 mA cm-2 and 2.43 A mgPt-1, respectively, which are 14.4 and 11.6 times higher than those of the commercial Pt/C. Notably, the novel catalyst also exhibits high stability and a much slower performance degradation than that of the benchmarked Pt3Cu/C with the same durability testing procedures. The comprehensive data confirm that the new type of catalyst possesses a high charge transfer during the ORR process, and the unique structure and synergistic effects between anchored Pt and the support mainly contributes to the high stability. This work provides a strategic method for designing an effective ORR electrocatalyst with desirable stability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.