Abstract

One of the major strategies to control magnetism in spintronics is to utilize the coupling between electron spin and its orbital motion. The Rashba and Dresselhaus spin–orbit couplings induce magnetic textures of band electrons called spin momentum locking, which produces a spin torque by the injection of electric current. However, joule heating had been a bottleneck for device applications. Here, we propose a theory to generate further rich spin textures in insulating antiferromagnets with broken spatial inversion symmetry (SIS), which is easily controlled by a small magnetic field. In antiferromagnets, the ordered moments host two species of magnons that serve as internal degrees of freedom in analogy with electron spins. The Dzyaloshinskii–Moriya interaction introduced by the SIS breaking couples the two-magnon-degrees of freedom with the magnon momentum. We present a systematic way to design such texture and to detect it via magnonic spin current for the realization of antiferromagnetic memory.

Highlights

  • One of the major strategies to control magnetism in spintronics is to utilize the coupling between electron spin and its orbital motion

  • Besides the conventional domain walls that appear in real space, particular focus is given on emergent spin textures in reciprocal space, called “spin momentum locking”

  • What if we regard two different species of magnons each belonging to the degenerate band as an analog of the electronic spin degrees of freedom? If this degrees of freedom couples to the magnon momentum via a DM interaction, such that the SO coupling does in electron systems, one may expect as rich phenomena as those of the Rashba-electronic systems in insulators

Read more

Summary

Results

There are two different ways of aligning the D-vector; In defining the spin indices that couples to Dij in an order, i → j, the D-vectors can take either a uniform or a staggered configuration along that direction. The former breaks the global SIS of the crystal, whereas the latter keeps the site-centered SIS. We do not consider explicitly the component of Dij normal to the 2D plane This is because the out-of-plane component generally takes the form of the staggered DM interaction as can be elucidated for the case of Ba2MnGe2O7 with space group P421m36, a Rashba

Dresselhaus-type
Discussion
Methods
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.