Abstract

The combination of biodegradable polymers and bioactive inorganic materials is being widely used for designing bone tissue engineering scaffolds. Here we report a composite hydrogel system composed of bioactive glass incorporated in covalently cross-linked oxidized alginate-gelatin hydrogel (ADA-GEL) for designing porous scaffolds with tunable stiffness and degradability using freeze-drying technique. Because of the presence of bioactive glass, the cross-linking kinetic and cross-linking degree of the hydrogels are significantly increased, which is the main factor for the measured enhanced mechanical strength of the bioactive glass containing ADA-GEL scaffolds. The hydrogels with high cross-linking degree exhibit low protein release profile and low degradability. Apatite formation on bioactive glass containing hydrogel-based scaffolds is confirmed by FTIR. Bone marrow-derived stromal cell growth is promoted in pristine ADA-GEL and 1% bioactive glass containing ADA-GEL scaffolds compared to the scaffolds of pure alginate, alginate-gelatin blended hydrogel, and 5% bioactive glass containing ADA-GEL. Initial studies indicated that the scaffolds, especially without bioactive glass, support osteogenic differentiation of murine bone marrow stromal cell line in the absence of foreign osteogenic stimulating supplements; however, they exhibit low levels of osteogenic expression.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call