Abstract

AbstractReplacing liquid electrolytes with solid‐state polymer electrolytes (SPEs) can solve the safety hazards of Li metal batteries (LMBs) while increasing their energy density. However, there has been limited success so far in preparing advanced SPEs with controllable molecular structure and chemical composition, posing great obstacles to further promoting its application in LMBs. Recently, ring‐opening polymerization (ROP), including cationic ROP, anionic ROP, and ring‐opening metathesis polymerization, has become a dazzling new star in achieving SPEs due to its mild polymerization conditions and controllable chemical composition (molecular structure, functional group), etc. Besides, there is no small molecule released during the polymerization process, which means reduced interfacial side reaction. Hence, in this review, the merits of ROP in preparing SPEs and its mechanism as well as interfering factors, etc are evaluated from the perspective of synthetic chemistry. Furthermore, the review focuses on outlining the existing cases related to ROP as much as possible and summarize them from different ring structures (from triple ring to multivariate ring) and polymerization methods, hoping to provide a comprehensive understanding and serve as strategic guidance for designing high‐performance SPEs. Challenges and opportunities regarding this burgeoning field are also discussed at the end.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call