Abstract

Hydrogels are used in a wide variety of biomedical applications including tissue engineering, biomolecule delivery, cell delivery, and cell culture. These hydrogels are often designed with a specific biological function in mind, requiring the chemical incorporation of bioactive factors to either mimic extracellular matrix or to deliver a payload to diseased tissue. Appropriate synthetic techniques to ligate bioactive factors, such as peptides and proteins, onto hydrogels are critical in designing materials with biological function. Here, we outline strategies for peptide and protein immobilization. We specifically focus on click chemistry, enzymatic ligation, and affinity binding for transient immobilization. Protein modification strategies have shifted toward site-specific modification using unnatural amino acids and engineered site-selective amino acid sequences to preserve both activity and structure. The selection of appropriate protein immobilization strategies is vital to engineering functional hydrogels. We provide insight into chemistry that balances the need for facile reactions while maintaining protein bioactivity or desired release.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.