Abstract

The tension variations across the width of the weaver's beam cause uneven tension in the fabric formation zone. As a result of the tension variation, the woven fabric tends to have fabric defects, such as non-uniform fabric density and differential dye take–up at various places on the fabric. As the warp ends are continuously subjected to varying tensions, warp breakage frequently occurs. As a result, the quality of the fabric produced suffers and there is reduced loom efficiency. However, uniformity in the fabric density is crucial, especially for technical and smart textiles. In this paper, the authors have attempted to model the varyingtensions across different segments of a warp sheet under a set of assumptions and derived a linear model. Furthermore, a prototype of an automatic tension control device is instrumentedwith two different positions which are located one meter apart and allows the tension variations across the warp-sheet to be practically observed. The measured average tension shows that variations in the internal tension on different segments of the warp-sheet can be minimized or even completely eliminated over time. With the implementation of a related experiment, the authors have shown the effectiveness of this automatic tension controller and its strong implications for the industry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.