Abstract

Virtual screening, a conventional in-silico approach to design an RNA aptamer against target proteins require huge RNA library containing 1010 to 1015 combination of RNA oligomers and high-performance computing systems. However, in the case of nuclear receptor proteins, screening can be narrowed down by using response element sequences rather than random RNA oligomer library. In this study, we used a novel method to design RNA aptamer against the DNA binding domain of the glucocorticoid receptor α (GRα). GRα plays a vital role in cancer metastasis such as colon, cervical and breast cancer by activating the S100A8 calcium-binding protein, which makes it a potential drug target for those cancers. We started the screening of 24 RNA aptamers (16 nucleotides long), all of which are glucocorticoid response elements (GRE) of S100A8. Among the aptamers screened, Apt-2, Apt-5, Apt-6 and Apt-15 are found to be most suitable by molecular docking and dynamic studies. The stability and compactness of the aptamer-protein complexes were assessed by GROMACS. The binding energies were rescored using the MM-PBSA method, which were −3679.581, −3690.892, −8246.052 and −3412.802 KJ/mol, respectively for Apt-2, Apt- 5, Apt-6 and Apt-15. The designed RNA aptamer may directly bind to the DNA binding domain of GR and prevent the trans-activation of the S100A8 gene by blocking the binding of GR to its response element. Thus, this novel approach of design the response elements-based RNA aptamer against GRα like nuclear receptor proteins will help to generate target-specific RNA aptamers with minimal efforts and cost. Communicated by Ramaswamy H. Sarma

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call