Abstract

Human ATP-binding cassette superfamily G member 2 (ABCG2) protein is a member of the ABC transporter family, which is responsible for multidrug resistance (MDR) in cancerous cells. MDR reduces the effectiveness of chemotherapy in breast cancer, which is one of the leading causes of death in women globally. MDR in cancer cells is one of the immediate signs of progression of resistance; thus, various anticancer drugs can be designed. To reduce MDR, we utilized the tetrahydro-β-carboline (THβC) compound library. We accomplished a three-dimensional quantitative structure-activity relationship (3D-QSAR), scaffold hopping to design a new library of compounds of THβC, and further molecular docking, induced-fit docking (IFD), molecular mechanics energies combined with generalized born and surface area continuum solvation (MM-GBSA), drug-like features, ADMET properties, and density functional theory (DFT) studies were performed. From these studies, the best 3D-QSAR model (r2 = 0.99, q2 = 0.92) was found, and the necessity of electrostatic, steric, and hydrophobic field effects were determined that could modulate bioactivity. Moreover, based on electrostatic, steric, and hydrophobic field notations, new THβC derivatives (3409) were designed. These findings might provide new insight for researchers to perform in vitro and in vivo studies for better antagonists against MDR in treating breast cancer.Communicated by Ramaswamy H. Sarma

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call