Abstract

Enterococcus species are an emerging group of bacterial pathogens that have a significant role in hospital-associated infections and are associated with higher mortality and morbidity rates. Among these pathogens, Enterococcus mundtii is one of the causative agents of multiple hospital associated infections. Currently, no commercially available licensed vaccine is present, and multi-drug resistant strains of the pathogen are prominent. Due to several limitations of experimental vaccinology, computational vaccine designing proved to be helpful in vaccine designing against several bacterial pathogens. Herein, we designed a multi-epitope-based vaccine against E. mundtii using in silico approaches. After an in-depth analysis of the core genome, three probable antigenic proteins (lytic polysaccharide monooxygenase, siderophore ABC transporter substrate-binding protein, and lytic polysaccharide monooxygenase) were shortlisted for epitope prediction. Among predicted epitopes, ten epitopes—GPADGRIAS, TTINHGGAQA, SERTALSVTT, GDGGNGGGEV, GIKEPDLEK, KQADDRIEA, QAIGGDTSN, EPLDEQTASR, AQWEPQSIEA, QPLKFSDFEL—were selected for multi-epitope vaccine construct designing. The screened B- and T-cell epitopes were joined with each other via specific linkers and linked to the cholera toxin B subunit as an adjuvant to enhance vaccine immune protection efficacy. The designed vaccine construct induced cellular and humoral immune responses. Blind docking with immune cell receptors, followed by molecular dynamic simulation results confirms the good binding potency and stability of the vaccine in providing protection against the pathogen.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.