Abstract
The development of photocatalysts with efficient hydrogen evolution activity has been the goal for sustainable hydrogen production. In this work, heterojunction composite photocatalyst is formed by hydrothermal coupling of ZnO and Mn0.2Cd0.8S. Compared with pure ZnO and Mn0.2Cd0.8S, the composite photocatalyst has the ability to provide more abundant active sites and better photogenerated carriers separation efficiency. The optimized composite photocatalyst shows a 9.36-fold increase in hydrogen evolution activity (4297.99 μmol g−1 h−1) compared to Mn0.2Cd0.8S (459.31 μmol g−1 h−1) and exhibits excellent cycling stability. Density functional theory calculations identifies Type-II charge transfer path in the composite photocatalyst, achieving effective separation in space of photogenerated electrons from holes and suppressing recombination within the semiconductor. The results show that the construction of Type-II heterojunction in this work achieves a significant enhancement of the hydrogen evolution activity of the photocatalyst by constructing carrier transport channels at the contact interface of the heterojunction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.