Abstract

Steganography is an information hiding technique for covert communication. So far Syndrome-Trellis Codes (STC), a convolutional codes-based method, is the only near-optimal coding method, i.e., it can approach the rate-distortion bound of content-adaptive steganography in practice. However, as a secure communication application, steganography needs the diversity of coding methods. This paper proposes another and a better near-optimal steganographic coding method based on polar codes, using Successive Cancellation List (SCL) decoding algorithm to minimize additive distortion in steganography. Considering a steganographic channel as a binary symmetric channel, the proposed Steganographic Polar Codes (SPC) chooses parity-check matrix by setting embedding payload as the initial value of Arikan’s heuristic and computes decoding channel metric from the optimal modification probability of minimal distortion model. To overcome the inherent defect of polar codes only suiting for code length of a power of 2, we introduce three strategies to generalize SPC for arbitrary length. Experimental results validate the versatility of SPC to minimize arbitrary distortion. When compared with STC, the overall coding performance of SPC is more superior with low embedding complexity. This work verifies the availability of polar codes for the practical construction of steganographic codes and provides a methodology for designing better steganographic codes based on any advance of polar coding/decoding.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call