Abstract

As devices and operating voltages are scaled down, future circuits will be plagued by higher soft error rates, reduced noise margins and defective devices. A key challenge for the future is retaining high reliability in the presence of faulty devices and noise. Probabilistic computing offers one possible approach. In this paper we describe our approach for mapping circuits onto CMOS using principles of probabilistic computation. In particular, we demonstrate how Markov random field elements may be built in CMOS and used to design combinational circuits running at ultra low supply voltages. We show that with our new design strategy, circuits can operate in highly noisy conditions and provide superior noise immunity, at reduced power dissipation. If extended to more complex circuits, our approach could lead to a paradigm shift in computing architecture without abandoning the dominant silicon CMOS technology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.