Abstract

In this paper, we introduce analog nonvolatile random access memory cells for neuromorphic computing. The analog memory cell MoS2 channel is designed based on the simulation model including Fowler–Nordheim tunneling through a charge-trapping stack, trapping process, and transfer characteristics to describe a full write/read circle. 2D channel materials provide scaling to higher densities as well as preeminent modulation of the conductance by the accumulated space charge from the oxide trapping layer. In this paper, the main parameters affecting the distribution of memory states and their total number are considered. The dependence of memory state distribution on channel doping concentration and the number of layers is given. In addition, how the nonlinearity of memory state distribution can be overcome by variation of operating conditions and by applying pulse width modulation to the bottom gate voltage is also shown.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.