Abstract

Ammonia borane (AB) has been in the spotlight for the chemical storage of hydrogen over the past decade. However, the development of methods for efficient and controlled hydrogen release from AB under mild conditions is still underway. Herein, using density functional theory (DFT) computations, we designed a metal-free frustrated Lewis pair (FLP) catalyst o-(BPh2 )C6 H4 (NiPr2 ) (M1) that can efficiently dehydrogenate AB to release more than two equivalents of H2 under mild conditions. Catalyst M1 can dehydrogenate not only AB to H2 N=BH2 (AOB) and H2 , but also oligomers of AOB with rather low free-energy barriers. The high dehydrogenation activity of M1 is the key of new oligomerization routes to the efficient dehydrogenation of AB to borazine (BZ) or H2 B-(NH=BH)n -NH2 (PIB) and finally to polyborazylene (PBZ) so that more than two equivalents of H2 can be released. A first-principle kinetic Monte Carlo (KMC) study reveals that the activity of our catalytic system can be tuned by varying the initial concentration of M1 and AB. This work can guide the design of catalyst for the highly efficient utilization of AB as a hydrogen storage material.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.