Abstract

In this paper we re-interpret a recently introduced method for obtaining non-separable, localized solutions of homogeneous partial differential equations. This reinterpretation is in the form of a geometrical consideration of the algebraic constraint that the Fourier transforms of such solutions must satisfy in the transform domain (phase space). With this approach we link two classes of localized, non-separable solutions of the homogeneous wave equation, and examine the transform domain characteristic that determines the space-time localization properties of these classes. This characterization allows us to design classes of solutions with better localization properties. In particular, we design and discuss the properties of several novel subluminal and superluminal solutions of the homogeneous wave equation. We also design families of non-separable, localized, subluminal and superluminal solutions of the Klein-Gordon equation by using the same technique.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.