Abstract

A linear quantitative structure activity relationship (QSAR) model is presented for predicting human immunodeficiency virus-1 (HIV-1) reverse transcriptase enzyme inhibition. The 2D QSAR and 3D-QSAR models were developed by stepwise multiple linear regression, partial least square (PLS) regression and k-nearest neighbor-molecular field analysis, PLS regression, respectively using a database consisting of 33 recently discovered benzoxazinones. The primary findings of this study is that the number of hydrogen atoms, number of (−NH2) group connected with solitary single bond alters the inhibition of HIV-1 reverse transcriptase. Further, presence of electrostatic, hydrophobic and steric field descriptors significantly affects the ability of benzoxazinone derivatives to inhibit HIV-1 reverse transcriptase. The selected descriptors could serve as a primer for the design of novel and potent antagonists of HIV-1 reverse transcriptase.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.