Abstract
AbstractRational engineering active sites and vantage defects of catalysts are promising but grand challenging task to enhance photoreduction CO2 to high value‐added C2 products. In this study, we designed an N,S‐codoped Fe‐based MIL‐88B catalyst with well‐defined bipyramidal hexagonal prism morphology via a facile and effective process, which was synthesized by addition of appropriate 1,2‐benzisothiazolin‐3‐one (BIT) and acetic acid to the reaction solution. Under simulated solar irradiation, the designed catalyst exhibits high C2H4 evolution yield of 17.7 μmol g−1⋅h, which has been rarely achieved in photocatalytic CO2 reduction process. The synergistic effect of Fe‐N coordinated sites and reasonable defects in the N,S‐codoped photocatalyst can accelerate the migration of photogenerated carriers, resulting in high electron density, and this in turn helps to facilitate the formation and dimerization of C−C coupling intermediates for C2H4 effectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.