Abstract

In the present study, preparation of poly(3,4-ethylenedioxythiophene) coated pencil graphite electrode with the addition of multi-walled carbon nanotubes (MWCNTs) (PEDOT nanoelectrode, NE); incorporation of double-stranded deoxyribonucleic acid (dsDNA) onto NE (dsDNA/PEDOT NE); and the bio-application of dsDNA/PEDOT NE were described. PEDOT NEs were first used to immobilize dsDNA onto the electrode surfaces in a high efficiency to detect dsDNA with advanced oxidation signals. Afterwards, these functional biointerfaces were used for the investigation of DNA interaction with Mitomycin C (MC) and Paclitaxel (PTX) based on guanine and adenine oxidation signals. dsDNA/PEDOT NE was presented a linearity in the concentration of 1 mg L−1 to 50 mg L−1 for MC with a detection limit of 0.26 mg L−1. The linear range was between 0.5 mg L−1 and 60 mg L−1 for PTX with a detection limit of 0.14 mg L−1 (n = 3). In addition, dsDNA/PEDOT NE was presented good stability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.