Abstract

The development of telecommunication technology is very rapid at this time has entered into 4G technology. Soon, the 5G technology has a fast data access speed of at least 1 Gbps. To support 5G technology is carried out in-depth research, especially in 5G antennas. This study aims to increase the bandwidth of Franklin's five array microstrip antennas using the DGS (Defected Ground Structure) method for 5G antenna applications at an operating frequency of 28 GHz. The research was conducted by doing rectangular defects in the ground field. This research produced an enhanced bandwidth by 1.707 GHz from 1.196 GHz without DGS (Defected Ground Structure) to 2.9 GHz with DGS (Defected Ground Structure). It means a bandwidth enhancement of 142.47%. At the same time, the design achieved a gain enhancement of 141.7 %. Franklin's microstrip antenna output with DGS (Defected Ground Structure) method from the research simulation results are the bandwidth of 2.9 GHz, reflection factor of -52.95 dB, and Gain 11.80 dB. In comparison, the results of antenna measurements that have been fabricated produce bandwidth of 2 GHz, reflection factor -27.72 dB on frequency 26.6 GHz. The deviation between the simulation and measurement may result in inaccuracies during the fabrication process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call