Abstract

ABSTRACT. This paper describes my experiences designing fishery models, starting from a mathematical background in the differential equations of theoretical physics. Three examples from my early research, cited by Quinn in the lead article for this issue, illustrate a historical approach to model design. Although such analytical results provide useful tools for thought, they sometimes gloss over important assumptions and limitations. I describe the series of questions that led me from simple models to a more complete statistical framework, involving state space models and Bayes statistics. Modern fishery models often grow into complex structures that depend on numerous arbitrary choices about underlying deterministic processes, process error, and measurement error. Given this inherent ambiguity and uncertainty, I discuss scientific limits to quantitative fishery models and future prospects for devising robust management algorithms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.