Abstract

Malaria is one of the major diseases of concern worldwide, especially in the African regions. According to a recent WHO report, 95% of deaths that occur due to malaria are in the African regions. Resistance to present antimalarial drugs is increasing rapidly and becoming a problem of concern. M17 Leucyl Aminopeptidase (PfM17LAP) and vacuolar Plasmepsins (PfPM) are two important enzymes involved in the haemoglobin degradation pathway of Plasmodium falciparum. PfM17LAP regulates the release of amino acids and PfPM mediates the conversion of haemoglobin proteins to oligopeptides. These enzymes thus play an essential role in the survival of malaria parasites inside the human body. In the present study, we used in-silico molecular docking, simulation and Molecular Mechanics Poisson-Boltzmann Surface Area (MMPBSA) studies to find potential dual inhibitors of PfPM and PfM17LAP using the ChEMBL antimalarial library. Absorption, distribution, metabolism, excretion and toxicity (ADMET) profiling of the top ten ranked molecules was done using the BIOVIA Discovery Studio. The present investigation revealed that the compound CHEMBL426945 is stable in the binding site of both PfPM and PfM17LAP. In this study, we have reported novel dual-inhibitors that may act better than the present antimalarial drugs. Communicated by Ramaswamy H. Sarma

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.