Abstract

Molecular barcode arrays are widely employed in the analysis of large strain libraries, whereby probes linked to unique oligonucleotides ("antitags") are used to detect selected DNA targets ("tags") by highly specific hybridization. One of the major problems for such screen designs is thus insuring a high degree of probe-target specificity and a low level of nonspecific binding (in sum, "orthogonality") across the entire tag population ("collection"). Several approaches have been previously proposed for designing orthogonal DNA tags by-among others-focusing on their individual or pair-wise structures, such as Smith Waterman sequence similarity, the widely used nearest neighbor method, and full thermodynamic estimates of sequences. However, these methods generally involve imposing various heuristic constraints ("design rules") on possible tag/antitag (TaT) sequences in order to achieve probe-target specificity across the collection. The resulting lack of freedom in considering all putative sequences can lead to potentially suboptimal designs and to the ensuing reduction in the degree of orthogonality within the constructed TaT collections. Here, we demonstrate that a randomized-search algorithm based on simulated annealing optimization can be used in order to substantially free the design process from the limitations of sequence constraints-allowing for the elucidation of potentially more optimal DNA tag collections. The designed sets of DNA oligonucleotides are optimized for the highest degree of orthogonality as quantified by melting temperature Tm-an experimentally relevant system property, which could also be used as a theoretically meaningful thermodynamic metric for optimizing TaT binding specificity. That is, this work describes an approach to constructing tag/antitag libraries, which offer the greatest melting temperature separation between specific probe-target duplexes and other nonspecific structures. The proposed method finds, with high probability, the global solution that maximizes the difference in Tm between the specific and nonspecific tag-antitag hybridizations across a collection of given size for TaTs of specified length. An application of this approach is demonstrated using 2 different DNA probe sets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call