Abstract
Abstract. In this paper, we address the problem of planning police patrol routes to regularly cover street segments of high crime density (hotspots) with limited police forces. A good patrolling strategy is required to minimise the average time lag between two consecutive visits to hotspots, as well as coordinating multiple patrollers and imparting unpredictability in patrol routes. Previous studies have designed different police patrol strategies for routing police patrol, but these strategies have difficulty in generalising to real patrolling and meeting various requirements. In this research we develop a new police patrolling strategy based on Bayesian method and ant colony algorithm. In this strategy, virtual marker (pheromone) is laid to mark the visiting history of each crime hotspot, and patrollers continuously decide which hotspot to patrol next based on pheromone level and other variables. Simulation results using real data testifies the effective, scalable, unpredictable and extensible nature of this strategy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.