Abstract
Strategic management of populations of interacting biological species routinely requires interventions combining multiple treatments or therapies. This is important in key research areas such as ecology, epidemiology, wound healing and oncology. Despite the well developed theory and techniques for determining single optimal controls, there is limited practical guidance supporting implementation of combination therapies. In this work we use optimal control theory to calculate optimal strategies for applying combination therapies to a model of acute myeloid leukaemia. We present a versatile framework to systematically explore the trade-offs that arise in designing combination therapy protocols using optimal control. We consider various combinations of continuous and bang-bang (discrete) controls, and we investigate how the control dynamics interact and respond to changes in the weighting and form of the pay-off characterising optimality. We demonstrate that the optimal controls respond non-linearly to treatment strength and control parameters, due to the interactions between species. We discuss challenges in appropriately characterising optimality in a multiple control setting and provide practical guidance for applying multiple optimal controls. Code used in this work to implement multiple optimal controls is available on GitHub.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.