Abstract

As is well known the Zeta converter is a fourth-order system. Therefore, the selection of the type of feedback controllers and its design, it is not an easy task. Usually many restrictions must be met in closed-loop control systems. For instance, it is necessary ensure system stability, as well as, guarantee that transient and steady-state responses are under preset limits. In order to design a controller (P, I, PD, PI, PID, Lead, Lag, Lead-Lag), is usually necessary to know the system plant. However, unfortunately, the system plant is not always available and even when it is accessible, designers must have good knowledge of control systems theory in order to design properly the controllers. Aiming to make the compensators design a simpler task to everyone this paper presents a computational model of the dynamic behavior of the Zeta converter working in discontinuous conduction mode, as well as, two design examples of feedback controllers. Two compensators were designed using MATLAB® and SIMULINK® specifically by means of the design optimization library, which could be used thanks to the computational model of the Zeta converter. It was performed a set of simulations using the PSIM® software, in order to validate the proposed computational model. The obtained results confirm that the computational model of the dynamic behavior of the Zeta converter in DCM is useful to design feedback controllers and also to reduce the development time of the compensators.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.