Abstract

The need for more efficient catalytic processes is ever-growing, and so are the costs associated with experimentally searching chemical space to find new promising catalysts. Despite the consolidated use of density functional theory (DFT) and other atomistic models for virtually screening molecules based on their simulated performance, data-driven approaches are rising as indispensable tools for designing and improving catalytic processes. Here, we present a deep learning model capable of generating new catalyst-ligand candidates by self-learning meaningful structural features solely from their language representation and computed binding energies. We train a recurrent neural network-based Variational Autoencoder (VAE) to compress the molecular representation of the catalyst into a lower dimensional latent space, in which a feed-forward neural network predicts the corresponding binding energy to be used as the optimization function. The outcome of the optimization in the latent space is then reconstructed back into the original molecular representation. These trained models achieve state-of-the-art predictive performances in catalysts' binding energy prediction and catalysts' design, with a mean absolute error of 2.42 kcal mol-1 and an ability to generate 84% valid and novel catalysts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call