Abstract

We theoretically design a kind of diffusion bistability (and even multistability) in the macroscopic scale, which has a similar phenomenon but different underlying mechanism from its microscopic counterpart [Phys. Rev. Lett. 101, 267203 (2008)10.1103/PhysRevLett.101.267203]; the latter has been extensively investigated in literature, e.g., for building nanometer-scale memory components. By introducing second- and third-order nonlinear terms (that opposite in sign) into diffusion coefficient matrices, a bistable energy or mass diffusion occurs with two different steady states identified as "0" and "1." In particular, we study heat conduction in a two-terminal three-body system and show that this bistable system exhibits a macroscale thermal memory effect with tailored nonlinear thermal conductivities. The theoretical analysis is confirmed by finite-element simulations. Also, we suggest experiments with metamaterials based on shape memory alloys. This theoretical framework blazes a trail on constructing intrinsic bistability or multistability in diffusive systems for macroscopic energy or mass management.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.