Abstract

Heart disease is one of the leading causes of death in the world. There is a growing demand for in vitro cardiac models that can recapitulate the complex physiology of the cardiac tissue. These cardiac models can provide a platform to better understand the underlying mechanisms of cardiac development and disease and aid in developing novel treatment alternatives and platforms towards personalized medicine. In this review, a summary of engineered cardiac platforms is presented. Basic design considerations for replicating the heart's microenvironment are discussed considering the anatomy of the heart. This is followed by a detailed summary of the currently available biomaterial platforms for modeling the heart tissue in vitro. These in vitro models include 2D surface modified structures, 3D molded structures, porous scaffolds, electrospun scaffolds, bioprinted structures, and heart-on-a-chip devices. The challenges faced by current models and the future directions of in vitro cardiac models are also discussed. Engineered in vitro tissue models utilizing patients' own cells could potentially revolutionize the way we develop treatment and diagnostic alternatives.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.