Abstract

Biosensing using liquid crystals has a tremendous potential by coupling the high degree of sensitivity of their alignment to their surroundings with clear optical feedback. Many existing set-ups use birefringence of nematic liquid crystals, which severely limits straightforward and frugal implementation into a sensing platform due to the sophisticated optical set-ups required. In this work, we instead utilize chiral nematic liquid crystal microdroplets, which show strongly reflected structural color, as sensing platforms for surface active agents. We systematically quantify the optical response of closely related biological amphiphiles and find unique optical signatures for each species. We detect signatures across a wide range of concentrations (from micromolar to millimolar), with fast response times (from seconds to minutes). The striking optical response is a function of the adsorption of surfactants in a nonhomogeneous manner and the topology of the chiral nematic liquid crystal orientation at the interface requiring a scattering, multidomain structure. We show that the surface interactions, in particular, the surface packing density, to be a function of both headgroup and tail and thus unique to each surfactant species. We show lab-on-a-chip capability of our method by drying droplets in high-density two-dimensional arrays and simply hydrating the chip to detect dissolved analytes. Finally, we show proof-of-principle in vivo biosensing in the healthy as well as inflamed intestinal tracts of live zebrafish larvae, demonstrating CLC droplets show a clear optical response specifically when exposed to the gut environment rich in amphiphiles. Our unique approach shows clear potential in developing on-site detection platforms and detecting biological amphiphiles in living organisms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.