Abstract

To develop potential next-generation metal anticancer agents, we designed and synthesised five Cu(II) 2-pyridine-thiosemicarbazone complexes by modifying the hydrogen atom at the N-4 position of ligands, and then investigated their structure-activity relationships and anticancer mechanisms. Modification of the N-4 position with different groups caused significant differences in cellular uptake and produced superior antitumor activity. Cu complexes arrested the cell cycle at S phase, leading to down-regulation of levels of cyclin and cyclin-dependent kinases and up-regulation of expression of cyclin-dependent kinase inhibitors. Cu complexes exerted chemotherapeutic effects via activating p53 and inducing production of reactive oxygen species to regulate expression of the B-cell lymphoma-2 family of proteins, causing a change in the mitochondrial membrane potential and release of cytochrome c to form a dimer with apoptosis protease activating factor-1, resulting in activation of caspase-9/3 to induce apoptosis. In addition, Cu complexes inhibited telomerase by down-regulating the c-myc regulator gene and expression of the human telomerase reverse transcriptase.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.