Abstract

A reference electrode is an essential component of all three-electrode electrochemical measurements. Common commercial reference electrodes, including the saturated calomel electrode and Ag/AgCl reference electrode, are expensive with the former containing toxic mercury. Cheaper alternatives have been proposed including Ag/AgCl references made from pipets and test tubes. However, electrodes prepared in this way are difficult to work with and are limited by the size and shape of glass casings that are available. This paper proposes an in-house manufactured Ag/AgCl reference electrode that uses some 3D-printed components in the fabrication process. This electrode is cheap to manufacture ($5 vs $60–100 CAD for the commercial reference electrode), and the design can be quickly altered due to the 3D printer’s capabilities in rapidly printing new electrode shapes to suit different analysts’ needs. The lab-made reference electrodes demonstrated stability and consistency in peak potential measurements in the cyclic voltammetry (CV) experiments. In ferricyanide CV tests, the recorded differences in anodic and cathodic peak potential (ΔEp) values for the commercial reference electrode and both lab-made electrodes were 68 ± 9%, 70 ± 12%, and 69 ± 13%, respectively. For all tests, the results were statistically comparable with those of the commercial Ag/AgCl reference electrode.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.