Abstract

Communication links forming secure telecommunications networks rely on various technologies such as message switching, circuit switching, or packet switching to transmit messages and data. Hamming codes, a family of linear error-correcting codes, are commonly used in communication networks to detect and correct one-bit and two-bit errors. However, reducing power consumption, occupied area, and latency in secure telecommunication networks remains a challenge for future information and communication technology. To address these challenges, emerging technologies like quantum dots offer potential solutions. Quantum-dot cellular automata (QCA) stands as a promising frontier in nanotechnology for enhancing secure telecommunications networks. It opens up the possibility of crafting high-performance, energy-efficient digital circuits. This research harnesses the potential of QCA and introduces groundbreaking innovations: a 3-8 decoder employing a single-layer layout and a 3-input XOR gate with a multi-layer configuration. These components are utilized in the design of an electronic circuit for Hamming codes, incorporating the QCA-based approach. It is important to note that practical implementation in real-world scenarios presents challenges due to the nature of QCA technology. As a result, the evaluation and validation of the proposed designs heavily rely on simulations using QCADesigner. While experimental validation in real-world scenarios is limited, the simulations provide insights into the functionality and feasibility of the suggested designs. By leveraging QCA, the proposed Hamming code circuit significantly enhances cell count, occupied area, and clock latency. The suggested design can be adapted to fit different generating matrices in Hamming codes without requiring drastic modifications to the underlying architecture.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call