Abstract
Stimulating households to save energy with behaviour change support systems is a challenge and an opportunity to support efforts towards more sustainable energy consumption. The approaches developed so far, often either; do not consider the underlying behaviour change process in a systematic way, or do not provide a systematic linking of design elements to findings from behaviour change literature and the design of persuasive systems. This paper discusses the design and evaluation of a holistic socio-technical behaviour change system for energy saving that combines insights from behavioural theories and the persuasive system design in a systematic way. The findings from these two streams of research are combined into an integrated socio-technical model for informing the design of a behaviour change system for energy saving, which is then implemented in a concrete system design. The developed system combines smart meter data with interactive visualisations of energy consumption and energy saving impact, gamified incentive mechanisms, energy saving recommendations and attention triggers. The system design distinguishes between a version with non-personalized energy saving tips and a version with personalized recommendations that are deployed and evaluated separately. In this paper, we present the design and evaluation results of the non-personalized system in a real-world pilot. Obtained results indicate reduced energy consumption compared to a control group and a positive change in energy knowledge in the treatment group using the system, as well as positive user feedback about the suitability of the designed system to encourage energy saving.
Highlights
Meeting the European targets for a reduction of CO2 emissions by 2030 (40% compared to 1990) and energy savings (27% compared to “business-as-usual”) (2030 Energy Strategy 2014) requires extensive changes in consumption behaviour of European citizens
This paper discusses the design and evaluation of a holistic socio-technical behaviour change system for energy saving that combines insights from behavioural theories and the persuasive system design in a systematic way. The findings from these two streams of research are combined into an integrated socio-technical model for informing the design of a behaviour change system for energy saving, which is implemented in a concrete system design
The demand for energy is indirect, created by services such as comfort, which are in turn provided by devices and infrastructures (Shove 2003a, b), and is “systematically configured” over the long term (Van Vliet et al 2012). When it comes to energy savings we propose that effective and sustainable behaviour change cannot be achieved by a single intervention impacting a specific attitudinal or behavioural variable, but requires a holistic socio-technical approach that uses a combination of individual enablers, mechanisms and techniques, and aligns technological enablers with suitable models of behaviour change
Summary
Meeting the European targets for a reduction of CO2 emissions by 2030 (40% compared to 1990) and energy savings (27% compared to “business-as-usual”) (2030 Energy Strategy 2014) requires extensive changes in consumption behaviour of European citizens. The demand for energy is indirect, created by services such as comfort, which are in turn provided by devices and infrastructures (Shove 2003a, b), and is “systematically configured” over the long term (Van Vliet et al 2012) When it comes to energy savings we propose that effective and sustainable behaviour change cannot be achieved by a single intervention impacting a specific attitudinal or behavioural variable, but requires a holistic socio-technical approach that uses a combination of individual enablers, mechanisms and techniques, and aligns technological enablers with suitable models of behaviour change. While such integrated socio-technical systems for behaviour change in energy saving are available in theory, they have not been validated in real-world pilots
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.