Abstract

Excess stress caused by accumulation of misfolded proteins inside the endoplasmic reticulum (ER) lumen can cause cells to undergo apoptosis. Misfolded proteins exported from ER to cytoplasm are ubiquitinated and mostly degraded by the proteasome, but can also be destroyed by autophagy mediated by the docking proteins p62 and NBR1. When misfolded proteins accumulate beyond the capacity of these clearance systems, they are transported to the microtubule organization center to form aggresomes, which are also degraded by autophagy. Together, these phenomena suggest the existence of a coordinated intracellular network for coping with the accumulation of misfolded proteins. Thus, rational inhibition of this network system might enhance killing of cancer cells subjected to pronounced ER stress loading. Based on this rationale, we sought to establish a quantitative assay for monitoring ER stress loading. MDA-MB231 cells stably transfected with the ERAI-Venus vector exhibited a strong XBP1 splicing signal in response to ER stress. Using the IncuCyte cell imaging system, we monitored the fluorescence intensity of XBP1-Venus, normalized against cell density, as an ER stress indicator. This parameter correlated closely with other reporters of unfolded protein responses. Assessment of the XBP1-Venus signal during exposure to various drug combinations revealed that simultaneous inhibition of the proteasome, autophagy, and aggresome formation led to more effective ER stress loading and higher cytotoxicity than inhibition of only two components. Our data suggest that this monitoring system is a useful tool for designing effective drug combinations for ER stress loading in cancer therapy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.