Abstract

Abstract This study introduced a fatigue-based approach to design and implement an indicator channel into an in-tank hydrogen valve. It was aimed at providing a mean to point out multiple early valve's damages. To achieve the goal, the study was proposed to handle via three main phases. They included (i) the risk point determinations, (ii) the new valve design and the crack nucleation life estimations, as well as (iii) the simplified crack growth analyses. The obtained results firstly highlighted the construction of the test channel (TC), whose branches were located close to the predicted damage's sites. The damages could be identified either when a crack reaches the TC (then forms a leakage) or indirectly via the crack propagations’ correlation. The results also pointed out that the TC-implemented valve could perform as similarly as the non-TC one in the non-treated condition. More importantly, this new structure was proved to have a capacity of satisfying the required minimal life of 1.5E5 cycles, depending on the combined uses of the specific material and the pre-treatment, among those considered. In addition, the results emphasized the complexity of the TC that could not be formed by the traditional manufacturing process. Hence, direct metal laser sintering was proposed for the associated prototype and the final TC was issued based on the fundamental requirements of the technique. Finally, it was suggested that practical experiments should essentially be carried out to yield more evidence to support the demonstrated results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call