Abstract

Full-body, powered wearable exoskeletons combine the capabilities of machines and humans to maximize productivity. Powered exoskeletons can ease industrial workers in manipulating heavy loads in a manner that is difficult to automate. However, introduction of exoskeletons may result in unexpected work hazards, due to the mismatch between user-intended and executed actions thereby creating difficulties in sensing the physical operational envelope, need for increased clearance, and maneuverability limitations. To control such hazards, this paper presents a rearview human localization augmented reality (AR) platform to enhance spatial awareness of people behind the exoskeleton users. This platform leverages a computer vision algorithm called Monocular 3D Pedestrian Localization and Uncertainty Estimation (MonoLoco) for identifying humans and estimating their distance from a video camera feed and off-the-shelf AR goggles for visualizing the surrounding. Augmenting rear view awareness of humans can help exoskeleton users to avoid accidental collisions that can lead to severe injuries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.