Abstract
All-solid-state sodium-carbon dioxide (Na-CO2) battery is an emerging technology that effectively utilizes the greenhouse gas, CO2, for energy storage with the virtues of minimized electrolyte leakage and suppressed Na dendrite growth for the Na metal anode. However, the sluggish reduction/evolution reactions of CO2 on the solid electrolyte/CO2 cathode interface have caused premature battery failure. Herein, nitrogen (N)-doped nanocarbon derived from metal-organic frameworks is designed as a cathode catalyst to solve this challenge. The porous and highly conductive N-doped nanocarbon possesses superior uptake and binding capability with CO2, which significantly accelerates the CO2 electroreduction and promotes the formation of thin sheetlike discharged products (200 nm in thickness) that can be easily decomposed upon charging. Accordingly, reduced discharge/charge overpotential, high discharge capacity (>10 000 mAh g-1), long cycle life, and high energy density (180 Wh kg-1 in pouch cells) are achieved at 50 °C.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.