Abstract

Emerging image-based technologies are critical components of airport security for screening checked baggage. Since these new technologies differ widely in cost and accuracy, a comprehensive mathematical framework should be developed for selecting technology or combination of technologies for efficient 100% baggage screening. This paper addresses the problem of setting threshold values of these screening technologies and determining the optimal combination of technologies in a two-level screening system by considering system capability and human reliability. Probability and optimization techniques are used to quantify and evaluate the cost- and risk-effectiveness of various deployment configurations, which is captured by using a system life-cycle cost model that incorporates the deployment cost, operating cost, and costs associated with system decisions. Two system decision rules are studied for a two-level screening system. For each decision rule, two different optimization approaches are formulated and investigated from practitioner's perspective. Numerical examples for different decision rules, optimization approaches and system arrangements are demonstrated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call