Abstract

The coronaviridae family has generated highly virulent viruses, including the ones responsible for three major pandemics in last two decades with SARS in 2002, MERS outbreak in 2012 and the current nCOVID19 crisis that has turned the world breadthless. Future outbreaks are also a plausible threat to mankind. As computational biologists, we are committed to address the need for a universal vaccine that can deter all these pathogenic viruses in a single shot. Notably, the spike proteins present in all these viruses function as credible PAMPs that are majorly sensed by human TLR4 receptors. Our study aims to recognize the amino acid sequence(s) of the viral spike proteins that are precisely responsible for interaction with human TLR4 and to screen the immunogenic epitopes present in them to develop a multi-epitope multi-target chimeric vaccine against the coronaviruses. Molecular design of the constructed vaccine peptide is qualified in silico; additionally, molecular docking and molecular dynamics simulation studies collectively reveal strong and stable interactions of the vaccine construct with TLRs and MHC receptors. In silico cloning is performed for proficient expression in bacterial systems. In silico immune simulation of the vaccine indicates highly immunogenic nature of the vaccine construct without any allergic response. The present biocomputational study hereby innovates a vaccine candidate - AbhiSCoVac hypothesized as a potent remedy to combat all the virulent forms of coronaviruses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call